ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ АРХАНГЕЛЬСКОЙ ОБЛАСТИ «МИРНИНСКИЙ ПРОМЫШЛЕННО-ЭКОНОМИЧЕСКИЙ ТЕХНИКУМ»

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ВЫПОЛНЕНИЯ ЛАБОРАТОРНЫХ РАБОТ ПО ОП.04 ОСНОВЫ ЭЛЕКТРОТЕХНИКИ И ЭЛЕКТРОННОЙ ТЕХНИКИ

для специальности: 09.02.01 Компьютерные системы и комплексы

Методические рекомендации для ОП.04 ОСНОВЫ ЭЛЕКТРОТЕХНИКИ И ЭЛЕКТРОННОЙ ТЕХНИКИ разработаны для выполнения лабораторных работ на стенде N1 ELVIS и составлены в соответствии с рабочей программой УД и учебным планом по специальности 09.02.01 «Компьютерные системы и комплексы».

Организация-разработчик: государственное бюджетное профессиональное образовательное учреждение Архангельской области «Мирнинский промышленно-экономический техникум»

Разработчик:

Венедиктова М.Н., заместитель директора по УР.

требованиями ФГОС по специальности
среднего профессионального
образования 09.02.01 «Компьютерные
системы и комплексы» и учебным
планом
образование по учествой работе
OB closms MH Reнеликтора
М.Н.Венедиктова

СОДЕРЖАНИЕ

1	Исследование вольтамперной характеристики выпрямительного	3
	диода и стабилитрона	
2	Исследование биполярного транзистора	6
3	Исследование полевого транзистора	11
4	Исследование инвертирующего усилителя	15
5	Исследование неинвертирующего усилителя	19
	Список использованных источников	23

ЛАБОРАТОРНАЯ РАБОТА №1

ИССЛЕДОВАНИЕ ВОЛЬТАМПЕРНОЙ ХАРАКТЕРИСТИКИ ВЫПРЯМИТЕЛЬНОГО ДИОДА И СТАБИЛИТРОНА

Цель работы: построить BAX, определить статическое и дифференциальное сопротивление полупроводникового диода; построить BAX и рассчитать дифференциальное сопротивление стабилитрона

1.1 Описание лабораторного стенда

В состав лабораторного стенда входят:

- базовый лабораторный стенд;
- лабораторный модуль **Lab1 A** для исследования BAX выпрямительного диода КД103A и стабилитрона КС 168A.

1.2 Рабочее задание

- подготовьте шаблон отчета в редакторе **MS Word**;
- установите лабораторный модуль **Lab1 A** на макетную плату лабораторной станции N1 ELVIS;
 - загрузите и запустите программу Lab l.vi. Нажмите Ctrl + R;
- после ознакомления с целью работы нажмите кнопку **«Начать работу».** На экране появится изображение виртуального прибора (ВП) (рисунок 1.1).

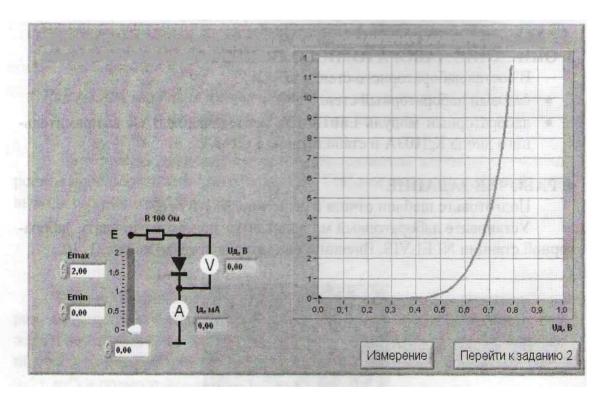


Рисунок 1.1 — Лицевая панель ВП при выполнении задания 1

Постройте прямую ветвь BAX выпрямительного диода. Для этого с помощью элементов управления BП E_{min} и E_{tax} выберите диапазон изменения напряжения на выходе источника ЭДС (рекомендуемые пределы от 0 В до +2В), после чего нажмите на панели ВП кнопку «Измерение». На графическом индикаторе ВП появится график ВАХ выпрямительного полупроводникового диода.

Скопируйте полученную ВАХ в буфер обмена, для чего щелкните правой кнопкой мыши на изображении индикатора и выберите из контекстного меню команду «**Copy Data**». Перейдя в редактор **MS Word**, вставьте изображение индикатора из буфера обмена на страницу отчета.

Используя ВАХ, определите статическое и дифференциальное сопротивление полупроводникового диода. Для этого, изменяя напряжение на выходе источника ЭДС с помощью ползункового регулятора, установите сначала напряжение через диод $U_{\rm д}$ равным 0,5 B, а затем равным 0,6 B. Запишите в отчет показания амперметра $I_{\rm д}$ и вольтметра $U_{\rm д}$ для этих точек ВАХ диода. На основании полученных данных, вычислите статическое сопротивление диода в указанных точках по формуле

$$R_{\rm CT} = U_{\rm IIp} / I_{\rm IIp} \tag{1.1}$$

и дифференциальное сопротивление диода по формуле

$$\mathbf{r}_{\text{ди}\phi} = \Delta \mathbf{U}/\Delta \mathbf{I} \tag{1.2}$$

Результаты запишите в отчет.

Для исследования ВАХ стабилитрона нажать кнопку «Перейти к заданию 2». (рисунок 1.2).

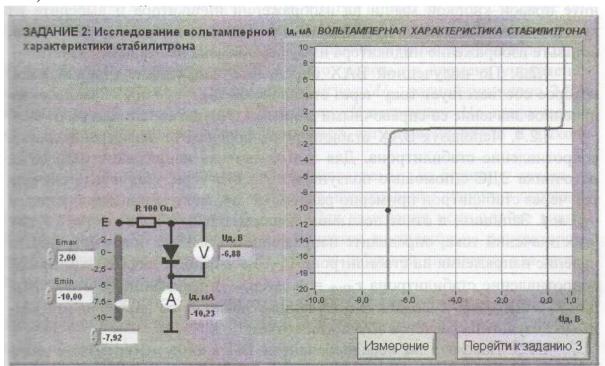


Рисунок 1.2 – Лицевая панель ВП при выполнении задания 2

Постройте ВАХ стабилитрона. Для этого с помощью элементов управления ВП E_{min} и E_{max} выберите диапазон изменения напряжения на выходе источника ЭДС (рекомендуемые пределы от -10 В до 2 В) и нажмите на панели ВП кнопку «Измерение». ВП выполнит серию измерений и на его графическом индикаторе появится график ВАХ стабилитрона.

- цель работы;
- ВАХ диода;
- расчёт статического и дифференциального сопротивлений диода;
- ВАХ стабилитрона;
- вывод.

ЛАБОРАТОРНАЯ РАБОТА №2

ИССЛЕДОВАНИЕ БИПОЛЯРНОГО ТРАНЗИСТОРА

Цель работы: определение коэффициента передачи биполярного транзистора (БТ) по постоянному току, исследование характеристик БТ

2.1 Описание лабораторного стенда

В состав лабораторного стенда входят:

- базовый лабораторный стенд;
- лабораторный модуль **Lab4A** для исследования характеристик биполярного транзистора типа КТЗ102Д.

2.2 Рабочее задание

Подготовьте шаблон отчета в редакторе MS Word.

Установите лабораторный модуль **Lab4A** на макетную плату лабораторной станции N1 ELVIS.

При исследовании характеристик биполярного транзистора используется схема, изображенная на рисунке 2.1.

Загрузите и запустите программу Lab-4A.vi.

После ознакомления с целью работы нажмите кнопку **«Начать работу».** На экране появится изображение ВП, необходимого для выполнения задания 1 (рисунок 2.2).

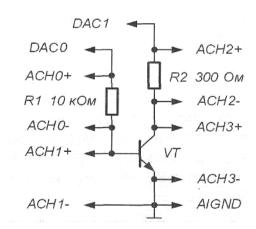


Рисунок 2.1 — Принципиальная электрическая схема для исследования характеристик биполярного транзистора

2.2.1 Определение коэффициента передачи биполярного транзистора по постоянному току

Установите с помощью ползунковых регуляторов, находящихся на передней панели ВП, напряжения источников питания $E_{\rm B}$ и $E_{\rm K}$, примерно равными указанным в таблице 2.1, и измерьте с помощью ВП соответствующие значения тока коллектора $1_{\rm K}$, тока базы $1_{\rm B}$ и напряжения коллектор-эмиттер $U_{\rm K9}$ - Полученные результаты запишите в таблицу.

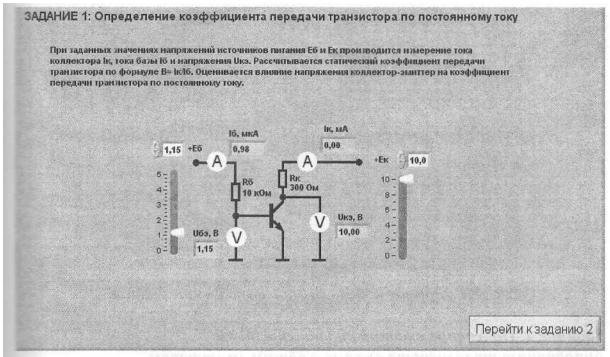


Рисунок 2.2 – Лицевая панель ВП при выполнении задания 1

Вычислите по формуле (4.1) и запишите в таблицу 4.1 значения статического коэффициента усиления транзистора β . Сделайте вывод о влиянии напряжения коллектор-эмиттер $U_{K\Im}$ на коэффициент усиления транзистора.

$$\beta = I_{\kappa}/I_{\delta} \tag{2.1}$$

Таблица 2.1 – Определение коэффициента передачи БТ по постоянному току

E_{B} , B	E_{κ} , B	I_{K} , MA	I _Б , мкА	U _{кэ} , в	β
1,25	5	N.		- 137 -	,
2,5	5				
5	5				
1,25	10				
2,5	10				
5	10				

Нажмите на передней панели ВП кнопку «Перейти к заданию 2», на экране появится лицевая панель ВП, необходимая для выполнения задания 2 (рисунок 2.3).

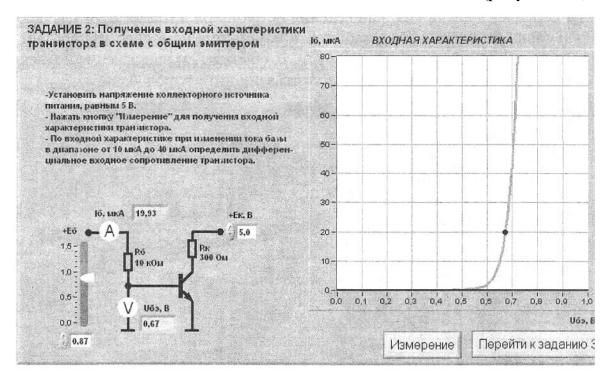


Рисунок 2.3 – Лицевая панель ВП при выполнении задания 2

2.2.2 Получение входной характеристики БТ в схеме с общим эмиттером

С помощью цифрового элемента управления, находящегося на передней панели ВП, установите значение напряжения питания коллектора E_{κ} , равным 5 В. Нажмите на панели ВП кнопку «**Измерение».** На графическом индикаторе ВП появится график зависимости входного тока $I_{\rm E}$ транзистора от входного напряжения $U_{\rm ED}$.

Скопируйте изображение, полученное на графическом индикаторе на страницу отчета.

Изменяя напряжение источника ЭДС базы $E_{\rm B}$ с помощью ползункового регулятора, расположенного на панели ВП, установите значение тока базы сначала примерно равным 10 мкA, а затем примерно равным 40 мкA. Запишите в отчет значения тока базы $I_{\rm B}$ и напряжения база-эмиттер $U_{\rm BO}$ для этих точек входной характеристики.

Вычислите дифференциальное входное сопротивление транзистора при изменении базового тока от 10 мкА до 40 мкА по формуле

$$r_{\text{BX}} = \Delta U_{\text{B3}} / \Delta I_{\text{B}} \tag{2.2}$$

Полученное значение запишите в отчет.

Нажмите на передней панели ВП кнопку «Перейти к заданию 3», на экране появится лицевая панель ВП, необходимая для выполнения задания 3 (рисунок 2.4).

2.2.3 Получение семейства выходных характеристик БТ в схеме с общим эмиттером

Нажмите на панели ВП кнопку «Измерение». На графическом индикаторе ВП

появятся графики зависимостей коллекторного тока I_K от напряжения коллектор-эмиттер Uкэ, полученные при плавном изменении напряжения на коллекторе транзистора от 0 до 10 B и фиксированных значениях напряжения источника ЭДС базы $E_{\rm B} = 0.6$ B; 0.74 B; 0.88 B; 1.02B; 1.16 B. Установившиеся при этом значения тока базы $I_{\rm B}$ отображаются на поле графика.

Скопируйте изображение, полученное на графическом индикаторе, на страницу отчета. Средствами MS Word для каждой кривой отметьте соответствующие значения тока базы транзистора.

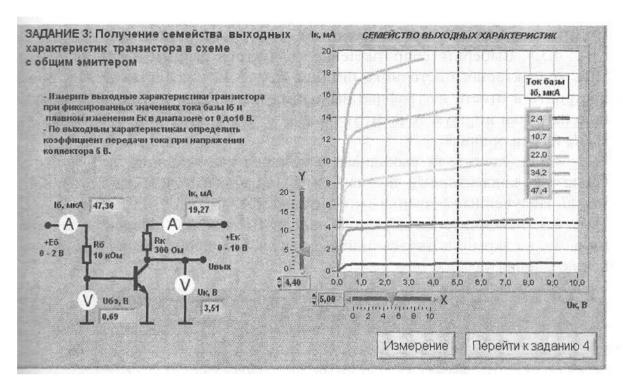


Рисунок 2.4 – Лицевая панель ВП при выполнении задания 3

При фиксированном коллекторном напряжении, равном U_{K9} =5 B, определите ток коллектора 1_{K} , соответствующий значениям тока базы, при которых снимались выходные характеристики.

Для этого с помощью расположенного на панели ВП ползункового регулятора установите вертикальную визирную линию напротив деления горизонтальной графика характеристик. оси выходных Затем c помощью горизонтальной визирной линии, перемещаемой ползунковым регулятором «Y», получите значения коллекторного тока в точках пересечения выходных характеристик с вертикальным визиром. Полученные результаты запишите в отчет.

Определите коэффициент передачи тока β при изменении тока базы в диапазоне от 10 мкА до 40 мкА по формуле

$$\beta = \Delta I_K / \Delta I_B \tag{2.3}$$

Полученное значение запишите в отчет.

- цель работы;
- определение коэффициента передачи БТ по постоянному току;
- входная характеристика БТ;
- выходные характеристики БТ;
- расчёт дифференциального входного сопротивления и коэффициента передачи тока;
 - вывод.

ЛАБОРАТОРНАЯ РАБОТА № 3 ИССЛЕДОВАНИЕ ПОЛЕВОГО ТРАНЗИСТОРА

Цель работы: определение коэффициента передачи транзистора по постоянному току, исследование характеристик БТ

3.1 Описание лабораторного стенда

В состав лабораторного стенда входят:

- базовый лабораторный стенд;
- лабораторный модуль **Lab5A** для исследования характеристик полевого транзистора типа КПЗОЗВ.

3.2 Рабочее задание

Подготовьте шаблон отчета в редакторе **MS Word.** Установите лабораторный модуль **Lab5A** на макетную плату лабораторной станции NI ELVIS. Внешний вид модуля показан на рисунке 3.2.

При исследовании характеристик полевого транзистора используется схема, изображенная на рисунке 3.1.

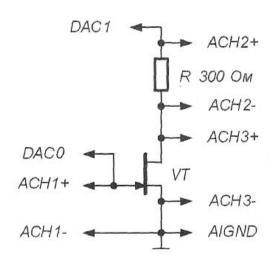


Рисунок 3.1 – Принципиальная электрическая схема для исследования характеристик полевого транзистор

Загрузите и запустите программу Lab-5.vi.

После ознакомления с целью работы нажмите кнопку **«Начать работу».** На экране появится изображение ВП, необходимого для выполнения задания 1 (рисунок 3.2).

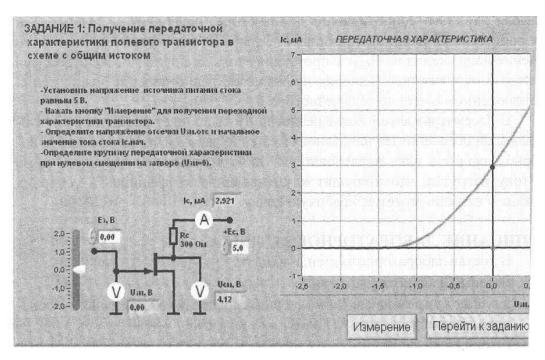


Рисунок 3.2 – Лицевая панель ВП при выполнении задания 1

3.2.1 Получение передаточной характеристики полевого транзистора в схеме с общим истоком

С помощью цифрового элемента управления, находящегося на передней панели ВП, установите значение напряжения питания стока равным 5 В. Нажмите на панели ВП кнопку «Измерение». На графическом индикаторе ВП появится график зависимости выходного тока I_C транзистора от входного напряжения U_{3H} . Скопируйте изображение, полученное на графическом индикаторе, на страницу отчета.

Изменяя напряжение источника ЭДС затвора E_3 с помощью ползункового регулятора, расположенного на панели ВП, установите значение тока стока I_C примерно равным 0.01 мА. Запишите в отчет значение напряжения отсечки затвор-исток $U_{3U\,OTC}$.

Изменяя напряжение источника ЭДС затвора E_3 с помощью ползункового регулятора, расположенного на панели ВП, установите значение напряжения затвор-исток $U_{3\text{H}}$ равным О В. Запишите в отчет начальное значение тока стока $I_{\text{C HAU}}$.

Вычислите значение коэффициента k, учитывающего конструктивные и технологические параметры транзистора, по формуле

$$k = I_{C \text{ HA4}} / (U_{3M \text{ OTC}})^2$$
 (3.1)

Изменяя напряжение источника ЭДС затвора E_3 с помощью ползункового регулятора, расположенного на панели ВП, установите значение напряжения затвор-исток $U_{3\text{II}}$ сначала равным $U_{3\text{II}}=$ - 0,1 B, а затем равным $U_{3\text{II}}=$ +0,1 B. Запишите в отчет значения тока стока I_{C1} и I_{C2} для этих точек передаточной характеристики.

Вычислите и запишите в отчет значение крутизны передаточной характеристики полевого транзистора в окрестности точки $U_{3\text{M}}$ =0 по формуле

$$S=(I_{C1} - I_{C2})/(U_{3H2} - U_{3H1})$$
(3.2)

Нажмите на передней панели ВП кнопку «**Перейти к заданию 2**», а затем «**Перейти к заданию 3**», на экране появится лицевая панель ВП, необходимая для выполнения задания 3 (рисунок 3.3).

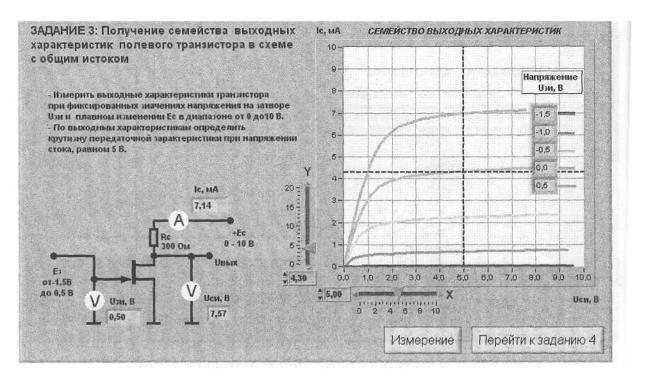


Рисунок 3.3 – Лицевая панель ВП при выполнении задания 3

3.2.2 Получение семейства выходных характеристик полевого транзистора в схеме с общим истоком

Нажмите на панели ВП кнопку «**Измерение**». На графическом индикаторе ВП появятся графики зависимостей тока стока $1_{\rm C}$ от напряжения сток-исток $U_{\rm CU}$, полученные при плавном изменении напряжения на стоке транзистора от 0 до 10 В и фиксированных значениях напряжения источника ЭДС затвора $U_{\rm 3U} = -1.5$ В; -1.0 В; -0.5 В; 0 В; +0.5 В. Установившиеся при этом значения напряжения $U_{\rm 3U}$ отображаются на поле графика.

Скопируйте изображение выходных характеристик транзистора в отчет. Средствами **MS Word** для каждой кривой отметьте соответствующие значения напряжения затвор-исток.

При фиксированном напряжении сток-исток, равном U_{CH} =5 B, определите ток стока I_{C} , соответствующий значениям напряжения на затворе, при которых снимались выходные характеристики.

Для этого с помощью расположенного на панели ВП ползункового регулятора $\langle\langle X \rangle\rangle$ «5B» вертикальную визирную линию напротив деления горизонтальной графика выходных характеристик. Затем оси помощью горизонтальной визирной линии, перемещаемой ползунковым регулятором «Y»,

получите значения тока стока в точках пересечения выходных характеристик с вертикальным визиром. Полученные результаты запишите в отчет.

Определите крутизну передаточной характеристики транзистора S при изменении напряжения затвор-исток в диапазоне от -1,0 B до 0 B по формуле

$$S = \Delta I_C / \Delta U_{3M}$$
 (3.3)

Полученное значение запишите в отчет.

- цель работы;
- стоко-затворная (передаточная) характеристика ПТ;
- выходные характеристики ПТ;
- расчёт коэффициента к и крутизны передаточной характеристики;
- вывод.

ЛАБОРАТОРНАЯ РАБОТА № 4 ИССЛЕДОВАНИЕ ИНВЕРТИРУЮЩЕГО УСИЛИТЕЛЯ

Цель работы: ознакомление с характеристиками операционного усилителя (ОУ), исследование работы инвертирующего усилителя на основе ОУ.

4.1 Описание лабораторного стенда

В состав лабораторного стенда входят:

- базовый лабораторный стенд;
- лабораторный модуль **Lab6A** для исследования схем на основе операционного усилителя.

4.2 Рабочее задание

Подготовьте шаблон отчета в редакторе **MS Word.** Установите лабораторный модуль **Lab6A** на макетную плату лабораторной станции NI ELVIS.

Загрузите и запустите программу Lab-6A.vi. Нажмите Ctrl + R.

После ознакомления с целью работы нажмите кнопку «**Начать работу**». На экране появится изображение передней панели ВП, используемого для выполнения задания 1 (рисунок 4.1).

4.2.1 Получение передаточной характеристики инвертирующего усилителя

Для исследования характеристик инвертирующего усилителя используется схема, изображенная на рисунке 4.2.

Рисунок 4.1 – Лицевая панель ВП при выполнении задания 4.2.1

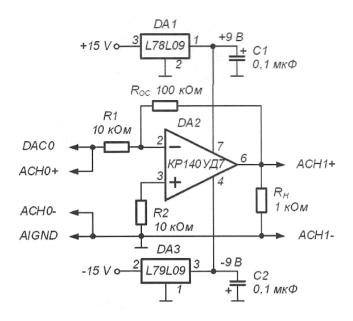


Рисунок 4.2 — Принципиальная электрическая схема для исследования характеристик инвертирующего усилителя

С помощью элементов управления ВП установите диапазон изменения входного сигнала (рекомендуемые значения $U_{\text{вх min}} = -1,2$ В, $U_{\text{вх max}} = 1,2$ В) и пределы изменения выходного сигнала (рекомендуемые значения $U_{\text{вых min}} = -10$ В, $U_{\text{вых max}} = 10$ В). Нажмите кнопку «Измерение». На графическом индикаторе ВП появится изображение передаточной характеристики инвертирующего усилителя.

Скопируйте полученный график на страницу отчета.

Определите по передаточной характеристике положительное U_{ozp+} и отрицательное U_{ozp-} напряжения ограничения сигнала на выходе схемы, используя для этого горизонтальную визирную линию, перемещаемую с помощью ползункового регулятора ВП. Результат запишите в отчет.

Определите коэффициент усиления инвертирующего усилителя. Для этого на передаточной характеристике с помощью упомянутых визирных линий определите координаты двух произвольных точек на наклонном участке характеристики и произведите вычисления по формуле:

$$K_{yc} = (U_{Bbix 2} - U_{Bbix 1})/(U_{Bx 2} - U_{Bx 1})$$
 (4.1)

Результат запишите в отчет.

Нажмите на передней панели ВП кнопку «Перейти к заданию 2», на экране появится лицевая панель ВП, необходимая для выполнения задания 4.2.2.

4.2.2 Исследование работы инвертирующего усилителя

С помощью элементов управления ВП установите следующий режим измерения: форма сигнала - синусоидальная, частота сигнала – 200 Гц. Амплитуда входного сигнала

выбирается такой величины, при которой выходной сигнал, наблюдаемый на графическом индикаторе ВП, не имеет искажений и удобен для наблюдения и измерений. Скопируйте полученное изображение выходного сигнала в буфер обмена и затем вставьте на страницу отчета.

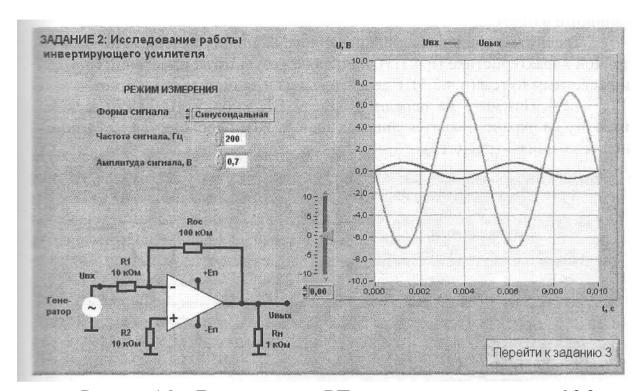


Рисунок 4.3 – Лицевая панель ВП при выполнении задания 6.2.2

Используя изображение входного и выходного сигналов на графических индикаторах ВП, определите с помощью горизонтальной визирной линии амплитуды входного $U_{ex.m}$ и выходного $U_{ex.m}$ сигналов. С помощью полученных данных вычислите коэффициент усиления инвертирующего усилителя по формуле:

$$K = U_{\text{BMX.m}} / U_{\text{BX.m}}$$
 (4.2)

<u>Примечание</u>: Для определения амплитуды сигнала необходимо измерить его максимальное U_{max} и минимальное U_{min} мгновенные значения и произвести вычисление по формуле:

$$U_{\rm m} = (U_{\rm max} - U_{\rm min})/2$$
 (4.3)

Используя изображения на графических индикаторах ВП, сравните фазы сигналов на входе и выходе инвертирующего усилителя. Сделайте вывод о характере изменения фазы сигнала инвертирующим усилителем и запишите его в отчет.

Рассчитайте коэффициент усиления инвертирующего усилителя. Для расчетов воспользуйтесь соотношением

$$K = R_{oc}/R_1 \tag{4.4}$$

Результаты запишите в отчет.

Сравните значения коэффициентов усиления, полученные по передаточной характеристике, на основе результатов измерений и расчетным путем. Сделайте вывод и запишите его в отчет.

- цель работы;
- график передаточной характеристики инвертирующего усилителя;
- изображение входного и выходного синусоидальных сигналов;
- расчёт коэффициентов усиления, полученных по передаточной характеристике, на основе результатов измерений и расчетным путем;
 - вывод.

ЛАБОРАТОРНАЯ РАБОТА № 5 ИССЛЕДОВАНИЕ НЕИНВЕРТИРУЮЩЕГО УСИЛИТЕЛЯ

Цель работы: ознакомление с характеристиками операционного усилителя, исследование работы неинвертирующего усилителя на основе ОУ.

5.1 Описание лабораторного стенда

В состав лабораторного стенда входят:

- базовый лабораторный стенд;
- лабораторный модуль **Lab6A** для исследования схем на основе операционного усилителя.

5.2 Рабочее задание

Подготовьте шаблон отчета в редакторе **MS Word.** Установите лабораторный модуль **Lab6A** на макетную плату лабораторной станции NI ELVIS.

Загрузите и запустите программу Lab-6A.vi. Нажмите Ctrl + R.

После ознакомления с целью работы нажмите кнопку «**Начать работу**». На экране появится изображение передней панели ВП, используемого для выполнения задания 1. Нажать кнопку «**Перейти к заданию 2**», а затем «**Перейти к заданию 3**», на экране появится лицевая панель ВП, необходимая для выполнения задания 3 (рисунок 5.1).

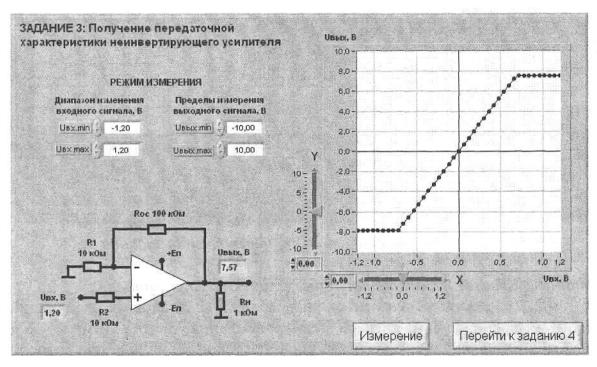


Рисунок 5.1 — Лицевая панель ВП при выполнении задания 5.2.1

5.2.1 Получение передаточной характеристики неинвертирующего усилителя С помощью элементов управления ВП установите диапазон изменения входного сигнала (рекомендуемые значения $U_{\text{вх min}} = -1,2$ В, $U_{\text{вх max}} = 1,2$ В) и пределы изменения выходного сигнала (рекомендуемые значения $U_{\text{вых min}} = -10$ В, $U_{\text{вых max}} = 10$ В). Нажмите

кнопку «**Измерение**». На графическом индикаторе ВП появится изображение передаточной характеристики неинвертирующего усилителя. Скопируйте полученный график на страницу отчета.

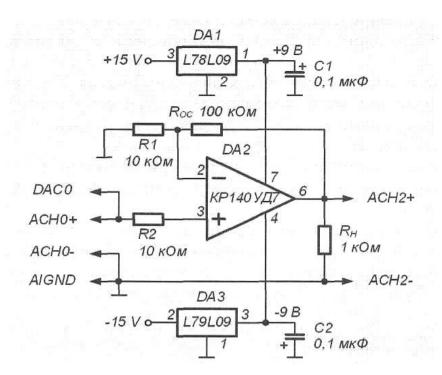


Рисунок 5.2 – Принципиальная электрическая схема для исследования характеристик неинвертирующего усилителя

Определите по передаточной характеристике положительное U_{ozp^+} и отрицательное U_{ozp^-} напряжения ограничения сигнала на выходе схемы, используя для этого горизонтальную визирную линию, перемещаемую с помощью ползункового регулятора ВП. Результат запишите в отчет.

Определите коэффициент усиления неинвертирующего усилителя. Для этого на передаточной характеристике с помощью упомянутых визирных линий определите координаты двух произвольных точек на наклонном участке характеристики и произведите вычисления по формуле:

$$K_{yc} = (U_{Bbix 2} - U_{Bbix 1})/(U_{Bx 2} - U_{Bx 1})$$
 (5.1)

Результат запишите в отчет.

Нажмите на передней панели ВП кнопку «Перейти к заданию 4», на экране появится лицевая панель ВП, необходимая для выполнения задания 5.2.2.

5.2.2 Исследование работы неинвертирующего усилителя

С помощью элементов управления ВП установите следующий режим измерения: форма сигнала - синусоидальная, частота сигнала -200 Гц. Амплитуда входного сигнала

выбирается такой величины, при которой выходной сигнал, наблюдаемый на графическом индикаторе ВП, не имеет искажений и удобен для наблюдения и измерений. Скопируйте полученное изображение выходного сигнала в буфер обмена и затем вставьте на страницу отчета.

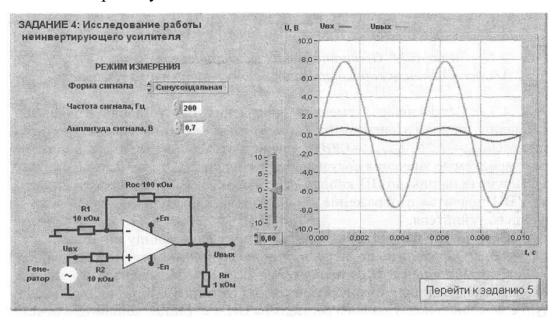


Рисунок 5.2 – Лицевая панель ВП при выполнении задания 5.2.2

Используя изображение входного и выходного сигналов на графических индикаторах ВП, определите с помощью горизонтальной визирной линии амплитуды входного $U_{\text{вх.m}}$ и выходного $U_{\text{вых.m}}$ сигналов. С помощью полученных данных вычислите коэффициент усиления инвертирующего усилителя по формуле:

$$K = U_{\text{BMX.m}} / U_{\text{BX.m}}$$
 (5.2)

<u>Примечание</u>: Для определения амплитуды сигнала необходимо измерить его максимальное U_{max} и минимальное U_{min} мгновенные значения и произвести вычисление по формуле:

$$U_{\rm m} = (U_{\rm max} - U_{\rm min})/2 \tag{5.3}$$

Используя изображения на графических индикаторах ВП, сравните фазы сигналов на входе и выходе неинвертирующего усилителя. Сделайте вывод о характере изменения фазы сигнала неинвертирующим усилителем и запишите его в отчет.

Рассчитайте коэффициент усиления неинвертирующего усилителя. Для расчетов воспользуйтесь соотношением

$$K=R_{oc}/R_1 \tag{5.4}$$

Результаты запишите в отчет.

Сравните значения коэффициентов усиления, полученные по передаточной характеристике, на основе результатов измерений и расчетным путем. Сделайте вывод и запишите его в отчет.

- цель работы;
- график передаточной характеристики неинвертирующего усилителя;
- изображение входного и выходного синусоидальных сигналов;
- расчёт коэффициентов усиления, полученных по передаточной характеристике, на основе результатов измерений и расчетным путем;
 - вывод.

Список использованных источников

- 1) Батоврин В.К., Бессонов А.С., Мошкин В.В. LabVIEW: практикум по аналоговой и цифровой электронике. М., ГОУ ВПО «Московский государственный университет радиотехники, автоматики и электроники», 2007;
- 2) Евдокимов Ю.К., Линдваль В.Р., Щербаков Г.И. LabVIEW для радиоинженера: от виртуальной модели до реального прибора. М., ДМК Пресс, 2007;
- 3) Богомолов С.А. Основы электроники и электротехники. М.: ИНФРА-М, 2016:
- 4) Синдеев Ю.Г. Электротехника с основами электроники. Ростов н/Д: Феникс, 2018;
 - 5) Покотило С.А. Электротехника и электроника. Ростов н/Д: Феникс, 2018;
- 6) Гальперин М.В. Электротехника и электроника : Учебник. М.: Форум, 2016;
- 7) Горошков Б.И., Горошков А.Б. Электронная техника. М.: Издательский центр «Академия», 2005;
- 8) Гусев В.Г., Гусев Ю.М. Электроника и микропроцессорная техника. М.: Высшая школа, 2006;
 - 9) Гальперин М.В. Электронная техника. М.: ФОРУМ: ИНФРА-М, 2003;
 - 10) Миловзоров О.В., Панков И.Г. Электроника. М.: Высшая школа, 2004;
- 11) Берикашвили В.Ш., Черепанов А.К. Электронная техника: Учебное пособие для студ. сред. проф. образования. М.: Академия, 2005.